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STRATIFIED FLOWS AND DIPOLE APPROXIMATIONS' 

A.M. TFR-KRIKOROV 

The potential method is used to study internal waves behind an obstacle 
in a three-dimensional ideal incompressible exponentially stratified flow 
between two horizontal walls. A fundamental solution is constructed for 
the equations of motion in Boussinesq form, whichsatisfiesthe radiation 
conditions and the boundary conditions on the plane walls. The 
properties of the fundamental solution and its asymptotic behaviour with 
respect to the small parameter 6 17 .Vlf/(nc) are investigated. The funda- 
mental solution is used to construct a solution of the boundary-value 
problem in the form of a double-layer potential. It is shown that the 
integral equation for the density is solvable of the parameter 8 is 
sufficiently small. Outside the semicyl.inder containing the 
perturbation source and aligned parallel to the flow 'axis, the wave 
field may be replaced, up to terms of higher order of smallness in the 
small parameters, by the wave field of a dipole whose moment is a linear 
function of the sum of the obstacle mass plus the adjoint mass 
associated with the translational motion of the obstacle along the axis 
of symmetry parallel to the flow velocity. 

7. Statement of the problem. An obstacle between two horizontal walls occupies the 
region 0. An ideal incompressible stratified fluid flows past the obstacle. The flow depth 
H/n and the unperturbed flow velocity c are taken as the units of length and velocity. The 
Vaisala-Brunt frequency N is assumed to be constant. The origin of the coordinate system is 
located on the top boundary plane, the X axis points in the direction of the flow, and the z 
axis points vertically upwards. If h is the characteristic size of the region 52 and the 
parameter p'= Nhlc is sufficiently small, then a unique trajectory exists with a bifurcation 
on the boundary of the region B /l/. All other tractories do not have critical points and 
as X-+-co tend asymptotically to straight lines parallel to the X-axis. If p (r, Ys 2) 
is an arbitrary point inside the fluid, then its asymptote as _r-t-- is a distance c(z,Y,z) 
from the xy plane. The problem is to find the function ~(5, y, z) = z - 5 (5, y, 2) which speci- 
fies the vertical deviation of the trajectory from its asymptote. 

The linearized equation for the function w has the form /l/ 

(1.1) 

The value &, of the variable 
constant, which should be determined 
the form 

I; (x, Y, 4 on the bifurcating trajectory is an unknown 
when solving the problem. The boundary conditions have 

W (an = z Ian - 60 (1.2) 

wlr=O = ~,71~_ = 0, limu? = lim \ VW1 = 0 (+ = 9 + y") 
r--r- I-co 

w = 0 (e+y, ] Tw 1 = 0 (8") for 2+ - m, y > 0 (1.3) 

2. The fundamental solution ana’ its properties. To solve the problem of the flow past 
an obstacle using potentials, we will use the Fourier method to construct the function G (r,'y, 
z* 57 B) that satisfies the boundary conditions (1.3) and the equation 

LG = 6 (z- 5) 1726 (z, y)/asz 

where 6 (x, y) and 6 (z - 5) are delta functions /2/. In the Appendix we show that this 
function can be reduced to the form 
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G = PV VJ (4 (H (PT y, z - 5) - H (fk y, z + j)) + G, + G, + G, 
co 

(2-l) 

Here 9(z) is the Heaviside function, which equals 0 for s<O and 1 for z> 0, J,,(s) 
is the Bessel function, and K0 (W is the modified Bessel function. The function G, is 
continuously differentiable and satisfies the uniform bound 

I G I + I GG, I < W (1 + B 1 x i) (2.2) 

The function G, is continuous, has bounded derivatives, and satisfies the uniform bound 

IG, I + I WI< Wexp (- .r/l - PI ~1) (2.3) 

From (2.1) and (2.2) it follows that the function G has a polar source singularity at 
the point (O,O, 6) and a logarithmic singularity on the r-axis. The series in the third 
formula in (2.1) converges rapidly for fi.z = O(i). 

3. Potential ftow. Consider the problem of the flow past an obstacle as p-0. The 
value p = 0 of the parameter corresponds to homogeneous flow past an obstacle. For small 
P# we can construct solutions which as p-0 uniformly tend to the solution of the problem 
of potential flow past an obstacle. First, however, we will investigate the limiting sol- 
ution for p = 0. 

Let 5 f (pl(z,y,z) be the potential of the flow past the region n. Consider the 
point source functions for the Dirichlet and Neumann problems in the layer --n< z<O, 

By Parseval's 
points P, Q in the 

Assuming that 

R&Q)=&- E (A-;)= rn (Pv Q’) 11=--m n 

$&W(~- E)" + (y - 9)") sin(nz 
n=1 

(34 

P =:P (2, y, z), Q = Q (E,q> C.), 0' = 0' (E, 9, -5) 
rn2 = (5 - E)2 + (y - q)2 + (2 + am - 6)2 

R&Q)=& 3' (A+---'I= '"('.v') nn ,A n 
(3.2) 

equality, the function Ri is square-integrable in each variable of the 
plane layer T(--n<z<O). 
the surface %2 satisfies the standard Lyapunov conditions of potential 

theory, we will seek the function wO(Q) that solves the external Dirichlet problem for 
Laplace's equationin theform of a double-layer potential /2/ 

wo (Q) = sj- 
d 

~,(P)&W'~Q)~SP 

This solution satisfies the conditions on the layer boundaries and the asymptotic con- 
ditions at infinity. In order to satisfy conditions (1.2) on the surface i.90, we stipulate 
that the density v,(P) is the solution of the integral equation 

vo (Q) + \j vo (“) &- R, (P, Q) dSp = z Ido - go (3.3) 



Eq.13.3) is solvable if and only if the right-hand side is orthogonal to the eigenfunc- 
tion p,(P) of the conjugate integral equations. If the solution of the homogeneous Neumann 
problem is sought as a simple-layer potential, then p@(P) is the density of this potential. 
The corresponding solution of the homogeneous Neumann problesn equals 1. 

The solvability condition is supplied by the equation for the unknown constant 

The constant co can be determined from this equation, i.e., the function PO(P) is 
not orthogonal to 1. 

Indeed, if this were not so the solution of the external Dirichlet problem w0' P) which 
equals 1 on $R could be represented as a double-layer potential. From the square inte- 
grability of the kernel over the region T it follows that the functions wol and VW,' are 
square integrable in the xegion T\& and the surface integrals of these functions over the 
lateral surfaces of cylinders of radius R with the generator parallel to the z-axis tend to 
zero as R-+w. 

Noting that 

and applying Green's formula to zu$, we obtain 

Therefore, ruj,l= 0 and wol = const in the region T\-% which is impossible, because 
the function II+' equals 1 on aa and vanishes at infinity. Thus, & is determined from Eq. 
(3.4). 

Assume that the region n is symmetrical about the straight line parallel to the axis x, 
the volume of 52 is V, and M is the adjoint mass of the region attributable to translational 
motion along the axis of symmetry. We can show that 

To prove this equality, note that the potential % fQf is the solution of the external 
Neumann problem and vanishes at infinity. It can therefore be represented as a simple-layer 
potential. Applying Green's formula to the function gz(Q), we obtain 

s Y()(P) co5 iv< dS = -$ (I’ -+ M) 
an 

Let us find the asymptotic behaviour of 'PI (Q) as Q--+CXJ. We can show that 

Substituting these relationships into Green's formula, we obtain 

We have previously shown that the function wo tQ9) 
potential with density 

can be represented as a double-layer 
%I (P). The asymptotic expression for w*(Q) as Q--o0 has the form 

(3.7) 



408 

Noting that v.= an/a~=d~,l& and comparing formulas (3.6) and (3.7), we obtain (3.5). 

4. Flow past an obstacle as $30. Let 

K (P, Q, fJ) = --26 (z - 5, Y - % z, 5, 8) 

We have shown in Sect.2 that the function R (J', Q, B) has a source singularity at the 
point P =Q and a logarithmic singularity Q (I) In ((y - n)2 -t (z - 5)2) on the ray I/=n,z= 

5 (964 is a continuously differentiable function). Outside the ray, the function R(P,Q,/3) 
is regular in the layer 2'. 

The solution of the problem of non-homogeneous flow past an obstacle will be sought in 
the form 

(4.1) 

The right-hand side has the same discontinuity on the surface dQ as the ordinary 
double-layer potential, and for the unknown function v(P, b) we obtain the Fredholm equation 

(4.2) 

We have seen in Sect.3 that for fl =0 and T= c0 this equation has the solution 

v = vo (0). Let 

v =vg + Bvr, t= Co + PC,, -9 (P, Q, PI = R, (P, Q)+BR, (P,Q, fl) (4.3) 

The kernel aR (P,,Q, /3)/aN generates a completely continuous inegral operator in the 
space of functions that are continuous on dQ. Let 

Ku=- k)&R,(P,Q,~)dSp, s 
i=O,i 

en 
(4.4)' 

(u, u)= j u(P)v(P)dSp 
fm 

Substituting (4.3) into (4.2) and using the notation (4.4), we obtain the equation 

(I - H,) v1 = -51 t Rrv,, + PR,", (4.5) 

Select rl so that the right-hand side of Eq.(4.5) is orthogonal to ,u,, and nofmalize CL,, 
so that (kg, 1) = 1. Then Eq.(4.5) takes the form 

(I - R,)v~=RI ~0 + BR,y, - (c1m R,v, + BRIvJ 

Since the operator Z-R, has a bounded inverse on the subspace of continuous functions 
orthogonal to p,,, we obtain 

~1 = (1 -R,)-' (R,v, - (PLO, RI%)) - B (I- R,)-'(R,v, - (~0, R,v,)) (4.6) 

For sufficiently small S, Eq.(4.6) has a solution, which can be constructed iteratively. 
Substituting the expression for v from (4.3) into (4.1), we obtain 

(4.7) 

The second term in (4.7) is omitted, because its contribution is of a higher order of 
smallness. Then 

w(z,y,z,p)=--2 Sv,(E,?,E)~G(I--5,Y-11,z,5.B)dSP 
an 

(4.8) 

Let ho be the submersion depth of the obstacle, d its diameter, and Tn the region 
obtained from the layer T by deleting all the rays that originate from the boundary points 
88 in the positive direction of the x-axis. From the properties of the function G described 
in Sect.2 it follows that the function G is analytical in 5, y, z in the region Tn for any 
(5, 1, 5) E aQ. 

We assume that the diameter d is small. Expanding the function G in powers of 5 -h, 
for (E, n, 5) E KJ and ignoring terms of the order of the diameter squared, we obtain 



Substituting (4.9) into (4.8) and using 
distances much greater than the depth of the 
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F (I, y, Zr ho, B) (5 - ho) + 0 ((5 - ho)) (4.91 

the equality (3.5), we obtain that in Tn, at 
fluid, we have the formula 

Formula (4.10) may be interpreted as the "dipole approximation" of the flow past an 
obstacle. Formula (4.10) was obtained in /3/ for the plane problem, when the potential of 
the corresponding homogeneous flow can be defined by a distribution of dipoles on a horizontal 
or vertical segment. 

5. Appendiz. InVeSt&Utian of the prqperties of the ftm?tia c. Expanding the function 
G in series in a system of sines {sin (nz)} and taking the Fourier transform of each coef- 
ficient of this series with respect to the variables x and y, we can show that 

RS e,,-OS, equalities (5.2) and (5.3) may be rewritten in the form /l/ 

t dt 

(tP + @/’ + Q?l” 

(53) 

(5.4) 

and for the functions G,,% and G,' we have the uniform bounds 

1 G2 I < C,Pn” (1 -t B 12 I), [%‘I< C,B’n4 exp C-zV-m) (5.6) 

Substituting (5.4) and (5.5) into (5.1), we obtain (2.1), where the function Go is 
defined by 12.41, the functions G, and Gp satisfy the bounds (2.5) and (2.61, and 

Let us transform formula (5.7). Since the function H is even in y, we may take r> 0. 
If we introduce a function 

x (r)= 2s = - ln(i -#) 
n=1 

which is regular in the upper, halfplane, (5.7) may be rewritten in the form 

(5.7) 

Using the well-known formula 

cos(t~cose)= Jo(~r)+2 ; (-i)* J,,@s) cos2W 
k=l 
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we substitute into it the expressions 

Formula (5.8) may be rewritten in the form 

Using the theory of residues to evaluate the integrals, we obtain (2.3). 
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LONG-WAVE THERMOCAPILLARY CONVECTION IN LAYERS WITH DEFORMABLE INTERFACES* 

A.A. NEPOMNYASHCHII and I.B. SIMANOVSKII 

Using non-linear equations describing finite-amplitude deformation of 
the interfaces /l/ of a system of horizontal immiscible liquid layers, 
long-wave convective flows are studied for nearly critical Marangoni 
numbers. The distortion of the interfaces is assumed to be weak. 
Approximate evolution equations are obtained for the deformation of the 
interfaces. Analytic solutions describing the stationary surface 
profile for thermocapillary convection are found, and their stability is 
investigated. 

1. Suppose two horizontal solid plates (z = 0, 2, = a) are maintained at constant and 
different temperatures, (the temperature difference being equal to 8), and that the space 
between the plates is filled with two immiscible liquid layers. In equilibrium the thickness 
of the lower (second) layer is equal to Ha, and that of the higher (first) layer is (1 - H)a; 
O<H<i. The densities of the media, the coefficients of dynamic and kinematic viscosity, 
and the thermal conductivity and thermal diffusivity are equal to Pmr l)m* v,, %I%* and ~,,,(m = 1 
for the upper layer and m = 2 for the lower layer). The surface tension o depends linearly 
on temperature T: u = o,(i -a?). 

As units of length, time, velocity, pressure and temperature we take a, a21v,, v,ta, p1v12/aa 
and 8 respectively. In dimensionless variables the convection equations and boundary con- 
ditions are written in the form 


